fiziks

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

1. Vector Algebra

Vector quantities have both *direction* as well as *magnitude* such as velocity, acceleration, force and momentum etc. We will use \vec{A} for any general vector and its magnitude by $|\vec{A}|$. In diagrams vectors are denoted by arrows: the length of the arrow is proportional to the magnitude of the vector, and the arrowhead indicates its direction. Minus $\vec{A}(-\vec{A})$ is a vector with the same magnitude as \vec{A} but of opposite direction.

1(a). Vector Operations

We define four vector operations: addition and three kinds of multiplication.

(i) Addition of two vectors

Place the tail of \vec{B} at the head of \vec{A} ; the sum, $\vec{A} + \vec{B}$, is the vector from the tail of \vec{A} to the head of \vec{B} .

Addition is *commutative*: $\vec{A} + \vec{B} = \vec{B} + \vec{A}$

Addition is associative: $(\vec{A} + \vec{B}) + \vec{C} = \vec{A} + (\vec{B} + \vec{C})$

To subtract a vector, add its opposite: $\vec{A} - \vec{B} = \vec{A} + (-\vec{B})$

Multiplication of a vector by a positive scalar a, multiplies the *magnitude* but leaves the direction unchanged. (If a is negative, the direction is reversed.) Scalar multiplication is distributive:

H.No. 40-D, Ground Floor, Jia Sarai, Near IIT, Hauz Khas, New Delhi-110016 Phone: 011-26865455/+91-9871145498 Website: www.physicsbyfiziks.com | Email: fiziks.physics@gmail.com

fiziks

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

(iii) Dot product of two vectors

The dot product of two vectors is define by

where θ is the angle they form when placed tail to tail. Note that $\vec{A} \cdot \vec{B}$ is itself a scalar. The dot product is commutative,

$$\vec{A}.\vec{B} = \vec{B}.\vec{A}$$
$$\vec{A}.\left(\vec{B} + \vec{C}\right) = \vec{A}.\vec{B} + \vec{A}.\vec{C}$$

and distributive,

Geometrically $\vec{A}.\vec{B}$ is the product of A times the projection of \vec{B} along \vec{A} (or the product

of *B* times the projection of \vec{A} along \vec{B}).

If the two vectors are parallel, $\vec{A}.\vec{B} = AB$

If two vectors are perpendicular, then $\vec{A}.\vec{B} = 0$

Law of cosines

Let $\vec{C} = \vec{A} - \vec{B}$ and then calculate dot product of \vec{C} with itself.

$$\vec{C}.\vec{C} = \left(\vec{A} - \vec{B}\right).\left(\vec{A} - \vec{B}\right) = \vec{A}.\vec{A} - \vec{A}.\vec{B} - \vec{B}.\vec{A} + \vec{B}.\vec{B}$$

$$C^2 = A^2 + B^2 - 2AB\cos\theta$$

(iv) Cross product of two vectors

The cross product of two vectors is define by

$$\vec{A} \times \vec{B} = AB\sin\theta \hat{n}$$

where \hat{n} is a unit vector(vector of length 1) pointing perpendicular to the plane of \vec{A} and \vec{B} . Of course there are two directions perpendicular to any plane "in" and "out." The ambiguity is resolved by the **right-hand rule:**

let your fingers point in the direction of first vector and curl around (via the smaller angle) toward the second; then your thumb indicates the direction of \hat{n} . (In figure $\vec{A} \times \vec{B}$ points into the page; $\vec{B} \times \vec{A}$ points out of the page)

fiziks

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

The cross product is distributive,

$$\overrightarrow{A} \times \left(\overrightarrow{B} \times \overrightarrow{C}\right) = \left(\overrightarrow{A} \times \overrightarrow{B}\right) + \left(\overrightarrow{A} \times \overrightarrow{C}\right)$$

but not commutative.

In fact,
$$(\vec{B} \times \vec{A}) = -(\vec{A} \times \vec{B}).$$

Geometrically, $|\vec{A} \times \vec{B}|$ is the area of the parallelogram generated by \vec{A} and \vec{B} . If two vectors are parallel, their cross product is zero.

In particular $\vec{A} \times \vec{A} = 0$ for any vector \vec{A}