1. Vector Algebra

Vector quantities have both direction as well as magnitude such as velocity, acceleration, force and momentum etc. We will use \vec{A} for any general vector and its magnitude by $|\vec{A}|$. In diagrams vectors are denoted by arrows: the length of the arrow is proportional to the magnitude of the vector, and the arrowhead indicates its direction. Minus $\vec{A}(-\vec{A})$ is a vector with the same magnitude as \vec{A} but of opposite direction.

1(a). Vector Operations

We define four vector operations: addition and three kinds of multiplication.

(i) Addition of two vectors

Place the tail of \vec{B} at the head of \vec{A}; the sum, $\vec{A}+\vec{B}$, is the vector from the tail of \vec{A} to the head of \vec{B}.

Addition is commutative: $\vec{A}+\vec{B}=\vec{B}+\vec{A}$
Addition is associative: $(\vec{A}+\vec{B})+\vec{C}=\vec{A}+(\vec{B}+\vec{C})$
To subtract a vector, add its opposite: $\vec{A}-\vec{B}=\vec{A}+(-\vec{B})$

(ii) Multiplication by scalar

Multiplication of a vector by a positive scalar a, multiplies the magnitude but leaves the direction unchanged. (If a is negative, the direction is reversed.) Scalar multiplication is distributive:

$$
a(\vec{A}+\vec{B})=a \vec{A}+a \vec{B}
$$

(iii) Dot product of two vectors

The dot product of two vectors is define by

$$
\vec{A} \cdot \vec{B}=A B \cos \theta
$$

where θ is the angle they form when placed tail to tail. Note that $\vec{A} \cdot \vec{B}$ is itself a scalar. The dot product is commutative,

$$
\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}
$$

and distributive,

$$
\vec{A} \cdot(\vec{B}+\vec{C})=\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{C}
$$

Geometrically $\vec{A} \cdot \vec{B}$ is the product of A times the projection of \vec{B} along \vec{A} (or the product of B times the projection of \vec{A} along \vec{B}).
If the two vectors are parallel, $\vec{A} \cdot \vec{B}=A B$
If two vectors are perpendicular, then $\vec{A} \cdot \vec{B}=0$

Law of cosines

Let $\vec{C}=\vec{A}-\vec{B}$ and then calculate dot product of \vec{C} with itself.
$\vec{C} \cdot \vec{C}=(\vec{A}-\vec{B}) \cdot(\vec{A}-\vec{B})=\vec{A} \cdot \vec{A}-\vec{A} \cdot \vec{B}-\vec{B} \cdot \vec{A}+\vec{B} \cdot \vec{B}$
$C^{2}=A^{2}+B^{2}-2 A B \cos \theta$

(iv) Cross product of two vectors

The cross product of two vectors is define by

$$
\vec{A} \times \vec{B}=A B \sin \theta \hat{n}
$$

where \hat{n} is a unit vector(vector of length 1) pointing perpendicular to the plane of \vec{A} and \vec{B}.Of course there are two directions perpendicular to any plane "in" and "out."
The ambiguity is resolved by the right-hand rule:
let your fingers point in the direction of first vector and curl around (via the smaller angle) toward the second; then your thumb indicates the direction of \hat{n}. (In figure $\vec{A} \times \vec{B}$ points into the page; $\vec{B} \times \vec{A}$ points out of the page)

The cross product is distributive,

$$
\vec{A} \times(\vec{B} \times \vec{C})=(\vec{A} \times \vec{B})+(\vec{A} \times \vec{C})
$$

but not commutative.
In fact, $(\vec{B} \times \vec{A})=-(\vec{A} \times \vec{B})$.
Geometrically, $|\vec{A} \times \vec{B}|$ is the area of the parallelogram generated by \vec{A} and \vec{B}. If two vectors are parallel, their cross product is zero.
In particular $\vec{A} \times \vec{A}=0$ for any vector \vec{A}

